Skip to main content

Breast Cancer Xenograft Murine Models

  • Protocol
  • First Online:
Cancer Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2508))

  • 3265 Accesses

Abstract

Mice are used as model organisms to understand the pathological basis of a variety of human diseases, including breast cancer. Both immunocompetent and immunocompromised mouse models are used depending on the scope of the study. Immunocompetent models allow the study of the impact of the immune system in murine models of mammary cancer, while immunodeficient mice serve as ideal host organisms to understand the behavior of human breast cancers within a biological system. Xenografting of human breast cancer cells into immunocompromised mouse models continues to be the most used fundamental animal model in preclinical breast cancer research. These in vivo models allow critical understanding of tumor biology and assessment of novel treatments, a necessary prelude to testing new drugs in the clinic. In this chapter, we provide detailed methodology for the use of non-obese diabetic (NOD) severe combined immunodeficient (SCID) mice in several breast cancer xenografting procedures, including established cell lines and patient-derived xenografts (PDXs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manjili MH (2011) Revisiting cancer immunoediting by understanding cancer immune complexity. J Pathol 224:5–9

    Article  CAS  Google Scholar 

  2. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  CAS  Google Scholar 

  3. Shultz LD, Schweitzer PA, Christianson SW et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    CAS  PubMed  Google Scholar 

  4. Prochazka M, Gaskins HR, Shultz LD et al (1992) The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci U S A 89:3290–3294

    Article  CAS  Google Scholar 

  5. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    Article  CAS  Google Scholar 

  6. Zhang X, Claerhout S, Prat A et al (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73:4885–4897

    Article  CAS  Google Scholar 

  7. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  Google Scholar 

  8. Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13(4):215

    Article  Google Scholar 

  9. Clarke R (1996) Human breast cancer cell line xenografts as models of breast cancer – the immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat 39:69–86

    Article  CAS  Google Scholar 

  10. Price JE, Polyzos A, Dan Zhang R et al (1990) Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50(3):717–721

    CAS  PubMed  Google Scholar 

  11. Price JE (1996) Metastasis from human breast cancer cell lines. Breast Cancer Res Treat 39:93–102

    Article  CAS  Google Scholar 

  12. Manders K, van de Poll-Franse LV, Creemers GJ et al (2006) Clinical management of women with metastatic breast cancer: a descriptive study according to age group. BMC Cancer 6:179

    Article  Google Scholar 

  13. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86

    Article  CAS  Google Scholar 

  14. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  Google Scholar 

  15. Kuperwasser C, Dessain S, Bierbaum BE et al (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65:6130–6138

    Article  CAS  Google Scholar 

  16. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  CAS  Google Scholar 

  17. Galli S, Colombo L, Vanzuli S et al (2000) Characterization of a fibroblastoid mammary carcinoma cell line (LM2) originated from a mouse adenocarcinoma. Int J Oncol 17:1259–1265

    CAS  PubMed  Google Scholar 

  18. Tentler JJ, Tan AC, Weekes CD et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350

    Article  CAS  Google Scholar 

  19. Cassidy JW, Caldas C, Bruna A (2015) Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res 75:2963–2968

    Article  CAS  Google Scholar 

  20. Bruna A, Rueda OM, Greenwood W et al (2016) A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167:260–274, e22

    Article  CAS  Google Scholar 

  21. Whittle JR, Lewis MT, Lindeman GJ et al (2015) Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 17:1–13

    Article  Google Scholar 

  22. Paez-Ribes M, Man S, Xu P et al (2016) Development of patient derived xenograft models of overt spontaneous breast cancer metastasis: a cautionary note. PLoS One 11(6):e0158034

    Article  Google Scholar 

  23. Brill B, Boecher N, Groner B et al (2008) A sparing procedure to clear the mouse mammary fat pad of epithelial components for transplantation analysis. Lab Anim 42:104–110

    Article  CAS  Google Scholar 

  24. Kim IS, Baek SH (2010) Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 394:443–447

    Article  CAS  Google Scholar 

  25. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res 8:1–11

    Article  Google Scholar 

  26. Borowsky AD (2011) Choosing a mouse model: experimental biology in context-the utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol 3:1–16

    Article  Google Scholar 

  27. Gomez-Cuadrado L, Tracey N, Ma R et al (2017) Mouse models of metastasis: progress and prospects. Dis Model Mech 10:1061–1074

    Article  CAS  Google Scholar 

  28. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:1–18

    Article  Google Scholar 

  29. Riaz M, van Jaarsveld MTM, Hollestelle A et al (2013) MiRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res 15:R33

    Article  CAS  Google Scholar 

  30. Prat A, Karginova O, Parker JS et al (2013) Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat 142:237–255

    Article  CAS  Google Scholar 

  31. Fernando W, Coyle K, Marcato P et al (2019) Phloridzin docosahexaenoate, a novel fatty acid ester of a plant polyphenol, inhibits mammary carcinoma cell metastasis. Cancer Lett 465:68–81

    Article  CAS  Google Scholar 

  32. Shi L, Ermis R, Garcia A et al (2010) Degradation of human collagen isoforms by Clostridium collagenase and the effects of degradation products on cell migration. Int Wound J 7:87–95

    Article  Google Scholar 

  33. Nikfarjam L, Farzaneh P (2012) Prevention and detection of mycoplasma contamination in cell culture. Cell J 13:203–212

    PubMed  Google Scholar 

Download references

Acknowledgments

PM is a senior scientist of the Beatrice Hunter Cancer Research Institute (BHCRI). WF is funded by a project grant to PM from the Canadian Institutes of Health Research (CIHR, PJT 162313). KMC is funded by a postdoctoral fellowship from the CIHR. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Marcato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernando, W., Coyle, K.M., Marcato, P. (2022). Breast Cancer Xenograft Murine Models. In: Christian, S.L. (eds) Cancer Cell Biology. Methods in Molecular Biology, vol 2508. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2376-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2376-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2375-6

  • Online ISBN: 978-1-0716-2376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics