Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogene addiction to GNAS in GNASR201 mutant tumors

Abstract

The GNASR201 gain-of-function mutation is the single most frequent cancer-causing mutation across all heterotrimeric G proteins, driving oncogenesis in various low-grade/benign gastrointestinal and pancreatic tumors. In this study, we investigated the role of GNAS and its product Gαs in tumor progression using peritoneal models of colorectal cancer (CRC). GNAS was knocked out in multiple CRC cell lines harboring GNASR201C/H mutations (KM12, SNU175, SKCO1), leading to decreased cell-growth in 2D and 3D organoid models. Nude mice were peritoneally injected with GNAS-knockout KM12 cells, leading to a decrease in tumor growth and drastically improved survival at 7 weeks. Supporting these findings, GNAS overexpression in LS174T cells led to increased cell-growth in 2D and 3D organoid models, and increased tumor growth in PDX mouse models. GNAS knockout decreased levels of cyclic AMP in KM12 cells, and molecular profiling identified phosphorylation of β-catenin and activation of its targets as critical downstream effects of mutant GNAS signaling. Supporting these findings, chemical inhibition of both PKA and β-catenin reduced growth of GNAS mutant organoids. Our findings demonstrate oncogene addiction to GNAS in peritoneal models of GNASR201C/H tumors, which signal through the cAMP/PKA and Wnt/β-catenin pathways. Thus, GNAS and its downstream mediators are promising therapeutic targets for GNAS mutant tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence of GNAS mutations in pan-cancer.
Fig. 2: Evaluation of GNAS knockout and overexpressing CRC cell lines.
Fig. 3: GNAS promotes tumor formation from KM12 and LS174T cells in the peritoneum of NSG mice.
Fig. 4: GNAS signals through the cAMP-PKA axis.
Fig. 5: β-catenin is a downstream mediator of mutant GNAS signaling.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its supplementary information files, gene expression data will be uploaded to GEO. Data generated for this study are available through the Gene Expression Omnibus (GEO). Accession number: GSE208278.

References

  1. O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol. 2014;27:126–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009;459:356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989;340:692–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hu Q, Shokat KM. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP. Cell 2018;173:1254–64.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M. Minireview: GNAS: normal and abnormal functions. Endocrinology 2004;145:5459–64.

    Article  CAS  PubMed  Google Scholar 

  6. Ideno N, Yamaguchi H, Ghosh B, Gupta S, Okumura T, Steffen DJ, et al. GNASR201C Induces Pancreatic Cystic Neoplasms in Mice That Express Activated KRAS by Inhibiting YAP1 Signaling. Gastroenterology 2018;155:1593–607.e12.

    Article  CAS  PubMed  Google Scholar 

  7. Patra KC, Kato Y, Mizukami Y, Widholz S, Boukhali M, Revenco I, et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat Cell Biol. 2018;20:811–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ang CSP, Shen JP, Hardy-Abeloos CJ, Huang JK, Ross JS, Miller VA, et al. Genomic Landscape of Appendiceal Neoplasms. JCO Precision Oncol. 2018;2:1–18.

    Google Scholar 

  9. Sassone-Corsi P. The Cyclic AMP Pathway. Cold Spring Harbor Perspectives in. Biology 2012;4:a011148.

    Google Scholar 

  10. Rosciglione S, Thériault C, Boily M-O, Paquette M, Lavoie C. Gαs regulates the post-endocytic sorting of G protein-coupled receptors. Nat Commun. 2014;5:4556.

    Article  CAS  PubMed  Google Scholar 

  11. Schatoff EM, Leach BI, Dow LE. Wnt Signaling and Colorectal Cancer. Curr Colorectal Cancer Rep. 2017;13:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang S, Ma J, Zhang W, Shen JP, Huang J, Peng J, et al. Typing tumors using pathways selected by somatic evolution. Nat Commun. 2018;9:4159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Garcia-Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, Ashworth A, et al. An siRNA screen identifies the GNAS locus as a driver in 20q amplified breast cancer. Oncogene 2014;33:2478–86.

    Article  CAS  PubMed  Google Scholar 

  15. Faias S, Duarte M, Pereira L, Chaves P, Cravo M, Dias Pereira A, et al. Methylation changes at the GNAS imprinted locus in pancreatic cystic neoplasms are important for the diagnosis of malignant cysts. World J Gastrointest Oncol. 2020;12:1056–64.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  18. Patel A, Cushman-Vokoun AM, Alex B, Sleightholm R, Foster JM. Mutations in GI cancers with peritoneal metastasis. J Clin Oncol. 2015;33:e22030-e.

    Article  Google Scholar 

  19. Raghav K, Shen JP, Jácome AA, Guerra JL, Scally CP, Taggart MW, et al. Integrated clinico-molecular profiling of appendiceal adenocarcinoma reveals a unique grade-driven entity distinct from colorectal cancer. Br J Cancer. 2020;123:1262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin Y-L, Ma R, Li Y. The biological basis and function of GNAS mutation in pseudomyxoma peritonei: a review. J Cancer Res Clin Oncol. 2020;146:2179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Komatsu H, Tanji E, Sakata N, Aoki T, Motoi F, Naitoh T, et al. A GNAS Mutation Found in Pancreatic Intraductal Papillary Mucinous Neoplasms Induces Drastic Alterations of Gene Expression Profiles with Upregulation of Mucin Genes. PloS ONE. 2014;9:e87875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nishikawa G, Sekine S, Ogawa R, Matsubara A, Mori T, Taniguchi H, et al. Frequent GNAS mutations in low-grade appendiceal mucinous neoplasms. Br J Cancer. 2013;108:951–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arang N, Gutkind JSG. Protein‐Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett. 2020;594:4201–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lochner A, Moolman JA. The many faces of H89: a review. Cardiovasc Drug Rev. 2006;24:261–74.

    Article  CAS  PubMed  Google Scholar 

  25. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. Phosphorylation of β-Catenin by Cyclic AMP-dependent Protein Kinase. J Biol Chem. 2006;281:9971–6.

    Article  CAS  PubMed  Google Scholar 

  26. Jung Y-S, Park J-I. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med. 2020;52:183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parsons MJ, Tammela T, Dow LE. WNT as a Driver and Dependency in Cancer. Cancer Discov. 2021;11:2413–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan SK, Yadav PS, Elliott G, Hu DZ, Xu R, Yang Y. Induced GnasR201H expression from the endogenous Gnas locus causes fibrous dysplasia by up-regulating Wnt/β-catenin signaling. Proc Natl Acad Sci USA. 2018;115:E418–E27.

    CAS  PubMed  Google Scholar 

  29. Stein MK, Williard FW, Xiu J, Tsao MW, Martin MG, Deschner BW, et al. Comprehensive tumor profiling reveals unique molecular differences between peritoneal metastases and primary colorectal adenocarcinoma. J Surg Oncol. 2020;121:1320–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stein MK, Williard FW, Tsao M, Deschner B, Dickson PV, Glazer ES, et al. Molecular comparison of primary colorectal cancer (pCRC) with peritoneal metastases (PM). J Clin Oncol. 2019;37:498-.

    Article  Google Scholar 

  31. Hosoda W, Sasaki E, Murakami Y, Yamao K, Shimizu Y, Yatabe Y. GNAS mutation is a frequent event in pancreatic intraductal papillary mucinous neoplasms and associated adenocarcinomas. Virchows Arch: Int J Pathol. 2015;466:665–74.

    Article  CAS  Google Scholar 

  32. Khan M, Loree JM, Advani SM, Ning J, Li W, Pereira AAL, et al. Prognostic Implications of Mucinous Differentiation in Metastatic Colorectal Carcinoma Can Be Explained by Distinct Molecular and Clinicopathologic Characteristics. Clin Colorectal cancer. 2018;17:e699–e709.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ritterhouse LL, Vivero M, Mino-Kenudson M, Sholl LM, Iafrate AJ, Nardi V, et al. GNAS mutations in primary mucinous and non-mucinous lung adenocarcinomas. Mod Pathol. 2017;30:1720–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 2009;9:874–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP–PKA–CREB signaling in cancer. Exp Hematol Oncol. 2020;9:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goh G, Scholl UI, Healy JM, Choi M, Prasad ML, Nelson-Williams C, et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet. 2014;46:613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hino S-i, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of β-Catenin by Cyclic AMP-Dependent Protein Kinase Stabilizes β-Catenin through Inhibition of Its Ubiquitination. Mol Cell Biol. 2005;25:9063–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sastre-Perona A, Santisteban P. Role of the Wnt Pathway in Thyroid Cancer. Front Endocrinol. 2012;3:31.

    Article  CAS  Google Scholar 

  39. Regard JB, Cherman N, Palmer D, Kuznetsov SA, Celi FS, Guettier J-M, et al. Wnt/ -catenin signaling is differentially regulated by G proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci. 2011;108:20101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gueorguiev M, Grossman AB. Pituitary gland and β-catenin signaling: from ontogeny to oncogenesis. Pituitary 2009;12:245–55.

    Article  CAS  PubMed  Google Scholar 

  41. Nomura R, Saito T, Mitomi H, Hidaka Y, Lee S-y, Watanabe S, et al. GNAS mutation as an alternative mechanism of activation of the Wnt/β-catenin signaling pathway in gastric adenocarcinoma of the fundic gland type. Hum Pathol. 2014;45:2488–96.

    Article  CAS  PubMed  Google Scholar 

  42. Wilson CH, McIntyre RE, Arends MJ, Adams DJ. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 2010;29:4567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tissier F, Cavard C, Groussin L, Perlemoine K, Fumey G, Hagneré A-M, et al. Mutations of β-Catenin in Adrenocortical Tumors: activation of the Wnt Signaling Pathway Is a Frequent Event in both Benign and Malignant Adrenocortical Tumors. Cancer Res. 2005;65:7622–7.

    Article  CAS  PubMed  Google Scholar 

  44. Almeida MQ, Stratakis CA. How does cAMP/protein kinase A signaling lead to tumors in the adrenal cortex and other tissues? Mol Cell Endocrinol. 2011;336:162–8.

    Article  CAS  PubMed  Google Scholar 

  45. Innamorati G, Wilkie TM, Kantheti HS, Valenti MT, Dalle Carbonare L, Giacomello L, et al. The curious case of Galphas gain-of-function in neoplasia. BMC Cancer. 2018;18:293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dai SA, Hu Q, Gao R, Lazar A, Zhang Z, von Zastrow M, et al. A GTP-state specific cyclic peptide inhibitor of the GTPase Gαs. bioRxiv. 2020:2020.04.25.054080.

  47. Onken MD, Makepeace CM, Kaltenbronn KM, Choi J, Hernandez-Aya L, Weilbaecher KN, et al. Targeting primary and metastatic uveal melanoma with a G protein inhibitor. J Biol Chem. 2021;296:100403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Coles GL, Cristea S, Webber JT, Levin RS, Moss SM, He A, et al. Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell. 2020;38:129–43.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  PubMed  Google Scholar 

  50. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  51. Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol Med. 2014;9:13.

    Article  PubMed Central  Google Scholar 

  52. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22:1760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  54. Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams ED, et al. Xenome-a tool for classifying reads from xenograft samples. Bioinformatics 2012;28:i172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang IS, Son H, Kim S, Kim S. ISOexpresso: a web-based platform for isoform-level expression analysis in human cancer. BMC Genom. 2016;17:631.

    Article  Google Scholar 

  56. Anders S, Huber W. Differential expression analysis for sequence count data. Genom Biol. 2010;11:R106.

    Article  CAS  Google Scholar 

  57. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kimbrel EA, Davis TN, Bradner JE, Kung AL. In vivo pharmacodynamic imaging of proteasome inhibition. Mol Imaging. 2009;8:140–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (L30 CA171000 and K22 CA234406 to JPS, and the Cancer Center Support Grant (P30 CA016672), the Cancer Prevention & Research Institute of Texas (RR180035 to JPS, JPS is a CPRIT Scholar in Cancer Research), and the Col. Daniel Connelly Memorial Fund. We thank the following core facilities at MD Anderson Cancer Center for their services used in this study: Reverse Phase Protein Array Core (Supported by NCI grant # CA16672 and #R50CA221675), Advanced Technology Genomics Core (Supported by NCI Grant CA016672(ATGC)), Biospecimen Extraction Facility for sample processing and DNA/RNA/protein extraction, and Small Animal Imaging Facility (Supported by the Cancer Center Support Grant CA16672) for in vivo live imaging. In addition, data generated by TCGA Research Network: https://www.cancer.gov/tcga was used in this publication. We also acknowledge Dr Kenna Shaw and data integration and clinical team members from the Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, supported by the Khalifa Bin Zayed Al Nahyan Foundation, for building and maintaining the MOCLIP database.

Author information

Authors and Affiliations

Authors

Contributions

AM, II, and VH conceived, designed, and performed all experiments and wrote the paper. SC and YG performed computational analysis and helped write the paper. PD performed animal experiments, and NF quantified and analyzed immunohistochemistry data. JPS conceived, designed and supervised the study, and wrote the paper.

Corresponding author

Correspondence to John Paul Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, A., Ito, I., Haridas, V. et al. Oncogene addiction to GNAS in GNASR201 mutant tumors. Oncogene 41, 4159–4168 (2022). https://doi.org/10.1038/s41388-022-02388-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02388-6

Search

Quick links