
Chapter

Working with
Documents

and Views

Topics in this Chapter

• Understanding the Two Document-Interface Structures

• Complex Combinations of Documents,
Views, and Frame Windows

• Working with Multiple Document Types

• Working with Complex Document Data

• Understanding How Your Applications Manage
Documents and Views

• Understanding the CMultiDocTemplate Class

• Working with Frame Windows

• Understanding the Document Template Resources

• Understanding and Using the CView Class

• Understanding Splitter Windows

• Using Static Splitters

• Using MFC to Subclass Windows

• Alternatives to the Document/View Architecture

• Summary

ch07.fm Page 192 Wednesday, November 24, 1999 11:41 AM

193

Chapter 7
t the core of an MFC application is the concept of a document object
and a corresponding view window. The document object usually rep-
resents a file the application has opened, while the view window pro-

vides a visual presentation of the document’s data and accepts user
interaction. The relationship between documents and views is a one-to-many
relationship. In other words, a document can have many views, but you can
associate a view with only one document.

Within your applications, you will represent document objects within
classes that you derive from the MFC CDocument base class. You will derive
your view window classes from the MFC CView class. In this chapter, you
will learn about CDocument and CView and how to use them with simple,
single-document interface (SDI) and multiple-document interface (MDI)
applications.

7.1 Understanding the Two
Document-Interface Structures

The built-in power of the document/view architecture, therefore, is that as
users work with the application, they create and destroy instances of the file
and user interface management code (and data) that define their very per-
ception of the data with which they work.

A

ch07.fm Page 193 Wednesday, November 24, 1999 11:41 AM

194 Chapter 7 Working with Documents and Views

A user-friendly application gives views to the application’s data that make
more sense to the user. For example, for most users it is probably difficult to
imagine how cold it will be in South Dakota based on tabular temperature
data from the entire United States. However, the common “blue is cold,
orange is hot” weather graphs that appear in newspapers make it easy to
guess what range of temperatures a traveler might expect with a quick glance
at the right part of the map. The tabular data still has value, though. It’s an
easy way to enter the data in the first place, and it’s the only way you might
ever find out what the weather is like in South Dakota if you weren’t com-
pletely sure where it was.

Core Note

Your applications may associate more than one instance of a particular
view with a given document, and you may even associate instances of
different views with the same document.

Single-document interface applications that you use AppWizard to pro-
duce only ever use one document and one view type, and only ever instanti-
ate one of each of these classes. However, this is only true of the AppWizard-
generated code — after the AppWizard creates your project, you can add as
many views (and for that matter, documents) as you desire, if you decide that
it’s convenient to use multiple instances of each different view or document.

Multiple-document interface applications will make use of at least one
document/view pair, but they may make use of additional documents and
views in different combinations to enable the user to work with other files or
to represent data in may different ways. As noted previously, you will learn
more about multiple-document interface applications later in this chapter.
Figure 7-1 shows which classes may support a simple SDI application that
you implement using MFC objects.

In AppWizard-generated SDI applications, the CMainFrame class imple-
ments the frame window. In such cases, AppWizard will define the CMain-
Frame class for you in the Mainfrm.h header file and implement the class in
the MainFrm.cpp source file. The CMainFrame class derives most of its
functionality from the CFrameWnd class, which is the MFC wrapper class
for a simple window. The CFrameWnd class does not do much in the sin-
gle-document interface application. The notable exceptions are if you have
added a status bar or dockable toolbars to the application, the CMain-
Frame class will handle the creation and initialization of those objects.

ch07.fm Page 194 Wednesday, November 24, 1999 11:41 AM

7.1 Understanding the Two Document-Interface Structures 195

Figure 7-1 The model of the relationship between the five base classes for an SDI
application.

While designing SDI applications is a useful exercise, SDI is generally only
acceptable when you create small, simple applications. Within most applica-
tions that you design for actual use, whether for public use or within your
own organization, you will require the ability to use multiple views, and gen-
erally multiple documents, to organize information. When you use multiple
documents within a single application, you will use the multiple-document
interface (MDI) model for the document/view structure. The layout of a
multiple-document interface application is a little more complicated than the
layout of a single-document interface application. Figure 7-2 shows the basic
layout of the MDI application structure.

As you can see from Figure 7-2, multiple-document applications still use a
main frame that holds the menu, toolbar, and status bars. However, in the MDI
application, the CMainFrame class derives from MFC’s CMDIFrameWnd
class, instead of the CFrameWnd class. CMDIFrameWnd has the same visual
characteristics as CFrameWnd, but it also implements the MDI frame protocol
that Windows expects in an MDI application.

ch07.fm Page 195 Wednesday, November 24, 1999 11:41 AM

196 Chapter 7 Working with Documents and Views

Figure 7-2 The basic layout of the MDI-application object structure.

The child windows that the figure depicts are also frame windows, but the
child windows are instances of the MFC class CMDIChildWnd . This MFC
class provides the child window that Windows MDI applications use in their
client area to hold each instance of the MDI application’s views. The frame-
works will create one CMDIChildWnd to contain each view the application
needs, just like the CMainFrame object wrapped the single view in the SDI
application. The wrapped view may be of any type and can refer to any open
document that the application is currently managing.

As a developer of MFC applications, it is your responsibility to decide
exactly what kind of documents and views you will implement, and how
they’ll interact with the basic framework provided by MFC’s implementation
of the single-document or multiple-document interfaces. Your code alters
and enhances the way the generic documents and views interact and behave.
By tuning things to work the way you want them to, you will eventually
develop the skeleton MFC provides into an application that does exactly what
you need. Over the course of this chapter, you will learn more about the com-

ch07.fm Page 196 Wednesday, November 24, 1999 11:41 AM

7.2 Complex Combinations of Documents, Views, and Frame Windows 197

ponents of the MDI application and use a simple MDI application so that
you can better decide what structure your applications require.

Conventional Windows applications written in C (and using the Windows
API) would modify the way that Windows’ own classes work. Within the
application’s body, your program code then would paint, draw, or store some-
thing as a direction to input messages (or combinations of input messages) to
your application’s windows. Fortunately, by using MFC, you are able to focus
more closely on working with classes, rather than working with a series of sys-
tem function calls. These MFC classes also support the ability to intercept
those basic Windows messages and, when appropriate, do work at a much
lower level.

7.2 Complex Combinations of
Documents, Views, and
Frame Windows

As you have learned, the standard relationship among a document, its
view(s), and its frame window(s) is described in a relatively straightforward
manner: a one-to-many relationship between documents and views, and a
one-to-one relationship between each view and a frame window. Many appli-
cations need only to support a single document type (but possibly let the user
open multiple documents of that type) with a single view on the document
and only one frame window per document. But some applications may need
to alter one or more of those defaults — creating multiple views on a single-
document type, single views on multiple-document types, or multiple views
on multiple-document types. It is worthwhile to consider the different situa-
tions that you may encounter when working with documents and views and
how you should design your applications to respond appropriately.

7.3 Working with Multiple-Document
Types

Whether you create an SDI or an MDI application, AppWizard will create
only a single document class for you. In some cases, though, you may need to
support more than one document type. For example, your application may

ch07.fm Page 197 Wednesday, November 24, 1999 11:41 AM

198 Chapter 7 Working with Documents and Views

need both worksheet and chart documents. Your application will probably
represent each document type with its own document class and typically by
its own view class or classes as well. When the user chooses the File menu’s
New option, the framework will display a dialog box that lists the application’s
supported document types. After the user chooses a document type, the
application creates a document of that type. The application then manages
each document type with its own document-template object.

To create extra document classes within your own applications, use the
Add Class button in the ClassWizard dialog box. Choose CDocument (or
COLEDocument) as the Class Type to derive form and supply the requested
document information. Then implement the new class’ data structures.

To let the framework know about your extra document class, you must
then add a second call to AddDocTemplate() in your application class’
InitInstance() member function. For example, an application with two
documents would include code within its InitInstance() member func-
tion similar to the following:

CMultiDocTemplate* pDocTemplate;
PDocTemplate = new CMultiDocTemplate(
 IDR_OPAINTTYPE,
 RUNTIME_CLASS(CSample1Doc),
 RUNTIME_CLASS(CMDIChildWnd),
 RUNTIME_CLASS(CSample1View));
AddDocTemplate(pDocTemplate);
pDocTemplate = new CMultiDocTemplate(
 IDR_OPAINTTYPE,
 RUNTIME_CLASS(CSample2Doc),
 RUNTIME_CLASS(CMDIChildWnd),
 RUNTIME_CLASS(CSample2View));
AddDocTemplate(pDocTemplate);

7.3.1 Understanding the CDocument Class

The MFC-provided CDocument class provides the basic functionality for
your application’s document objects. The CDocument class’ basic function-
ality includes the ability to create new documents, serialize document data,
provide basic cooperation between a document object and view window, and
more. MFC also provides a series of CDocument- derived classes that
implement functionality specific to certain application types. For example,
MFC provides the CRecordset and CDAORecordset types to simplify
the creation of database views. You can visualize the relationship between
documents and views as shown in Figure 7-3.

ch07.fm Page 198 Wednesday, November 24, 1999 11:41 AM

7.3 Working with Multiple-Document Types 199

Figure 7-3 The one-to-many relationship between a document and its views.

7.3.2 Declaring a Document Class
in Your Application

When you use the AppWizard to create your applications, you often do not
need to worry about declaring your base document class — the AppWizard
does it for you. However, it is still useful for you to understand the behavior
of the CDocument class because more complex programs might very possi-
bly require multiple instances of multiple derivations from CDocument . In
addition, understanding the behavior of CDocument lets you easily enhance
the AppWizard-generated application skeleton.

Core Note

Whether you create a single-document interface application or a multiple-
document interface application, the AppWizard will only derive a single-
document class for you from the MFC CDocument base class.

When you build a simple MFC application, it is often enough for you to
make relatively minor modifications to your AppWizard-supplied document
class. Often, you will not need to do much more to the class than add some
member variables and some member functions that other portions of the pro-
gram can use to access those member variables.

For example, the document object for a simple communications program
(such as a terminal emulator) might contain member variables for settings.
Those member variables would probably store information such as a tele-

ch07.fm Page 199 Wednesday, November 24, 1999 11:41 AM

200 Chapter 7 Working with Documents and Views

phone number, speed, parity, number of bits in each transmission segment,
and so on. You could easily represent the communications settings with a set
of simple member variables in the derived document class, as shown in the
following code snippet:

class CSimpleTermDoc : public CDocument {
 protected:
 CSimpleTermDoc();
 DECLARE_DYNCREATE(CSimpleTermDoc)
 public: CString_m_sPhoneNum;
 DWORD m_dwTransSpeed;
 WORD m_nTransParity;
 WORD m_nTransBits;
 DWORD m_dwConnectTime;

After you declare the member variables, you must ensure that the program
initializes the variables to some default values in the CSimpleTermDoc
class’ OnNewDocument() member function. In addition, you must place
code in the Serialize() function to ensure that the program serializes
the variables properly.

For your simpler applications, you really need do nothing beyond the ini-
tialization and serialization of your member variables to have a complete,
fully functioning document class.

7.3.3 Using CDocument’s Member Functions

The CDocument class has several member functions, in addition to the
serialization and initialization member functions that your applications will
frequently use. The first set of member functions provides access to the
associated view subjects. Every document object that you use within your
applications will have a list of view objects that you associate with it. You
can call the GetFirstViewPosition() member function for the docu-
ment object to obtain an iterator to this list. The iterator will be of type
POSITION.

You will use values of type POSITION throughout the MFC, primarily
with collection classes. When your applications must traverse a list, you will
typically request an iterator that the collection class associates with the first
object on the list, and then use an iterator function to access the actual ele-
ments the list contains, one-by-one. CDocument , in this context, is a collec-
tion class; it maintains information about the collection of views associated
with the class. Therefore, after you obtain the iterator to the first view of the
GetFirstViewPosition() member function, you can repeatedly call

ch07.fm Page 200 Wednesday, November 24, 1999 11:41 AM

7.3 Working with Multiple-Document Types 201

the GetNextView() member function to work through the remaining
views in the collection.

In other words, to process all the views that your program has associated
with a given document object, your program code will generally look similar
to the following:

POSITION posView = GetFirstViewPosition();

while (posView != NULL) {

 CView *pView = GetNextView(posView);

 // Do something with the pointer to the view

}

However, if all your program code is trying to accomplish is to notify all the
views for the document that information within the document has changed,
you can simply invoke the document object’s UpdateAllViews() mem-
ber function instead of iterating the views. Furthermore, you can also specify
application-specific data that instructs the views to selectively update only
portions of the view windows when you call the UpdateAllViews()
function.

Some other view-related member functions for the document object that
you will use much less frequently include the AddView() and Remove-
View() functions. As their names indicate, the functions let you manually
add and remove views from a document’s list of views. In general, you will
use the functions only rarely, as most developers simply use the default MFC
implementation with little or no modification.

Whenever the document’s data changes (either through a user’s action
or through internal program processing), your program should call the
SetModifiedFlag() member function. Consistent use of SetModi-
fiedFlag() will ensure that the MFC framework prompts the user
before letting the user destroy an unsaved, changed document. Should
you decide to override the framework, you can call the IsModified()
member function to obtain the status of the flag.

You can use the SetTitle() member function to set the document
object’s title. The application, in turn, will display the title you set in the
frame window (the main frame window in an SDI application, and the child
frame window for the object in an MDI application).

You can also set the fully qualified path name for the document with the
SetPathName() function and obtain the path name with the GetPath-
Name() function. Finally, you can obtain the document template that the
program associated with the document at the document’s creation through a
call to GetDocTemplate() .

ch07.fm Page 201 Wednesday, November 24, 1999 11:41 AM

202 Chapter 7 Working with Documents and Views

7.3.4 Better Understanding Documents and
Message Processing

One of the most important features of a document is that a CDocument
object is not directly associated with a window. Instead, a CDocument object
is itself a command-target object — which means that the object can receive
messages from the operating system. The view objects that you associated
with a CDocument object are responsible for routing messages from the
operating system to the document.

Because the view objects you associate with the document and the frame
window that holds the document will receive messages before passing them
through to the document, you have a great deal of control over which mes-
sages the frame window, views, and document process. However, there are
some common-sense rules of thumb (as well as some simplicity issues) that
provide you with a good starting point for how to process incoming messages.

When you consider messages, or for that matter any time that you are
working with the document-view architecture, you should always keep in
mind that a document is an abstract representation of your data — a repre-
sentation, that is, which is independent of the visual representation of the
data that the view window will provide. As importantly, a document may have
one, many, or no views attached to it, so documents should respond only to
messages that are global in nature. That is, a document should respond only
to messages that have an immediate effect on the document’s data, which
messages’ effect all the views attached to the document should reflect. On
the other hand, views should respond to messages that are specific to that
window’s view only.

In practical terms, the division of responsibilities between documents and
views generally makes it easier to determine how to process a given com-
mand. For example, if your application has a Save command, which the user
would select to save the data in the object, the document should handle that
command because the command is concerned with the data, not how the
user sees the data.

On the other hand, if your application supports a Copy command, which
the user would usually select to copy data the user has selected within the dis-
play, you would probably want to handle the command in the view. In fact, if
a document supports multiple views, the data selected in each view might
vary — making it even more clear that you should generally process the copy
command separately for each view attached to a document.

Both cases we have considered already are relatively clean-cut — you are
saving the data in the first example, and you are copying representation of the

ch07.fm Page 202 Wednesday, November 24, 1999 11:41 AM

7.3 Working with Multiple-Document Types 203

data from within one view to another view in the second example. However,
there are some borderline cases. A common one is the Paste command.
Determining whether the document class or the view class should handle it is
slightly more complex. The Paste command impacts the entire document
(you are inserting data into the document), not just a single view. On the
other hand, the current view may have significant importance when pasting
information into a document. For example, the paste action may actually
replace existing, selected text within the view. In other words, the decision
you must make about whether the document object or the view object should
handle actions of this type is dependent on your application’s design, and is
usually something you should think through carefully.

Just to keep it interesting, there are also certain commands that you should
not handle in either the document class or the view class, but rather in the
frame window’s code. Excellent examples of commands that you should han-
dle within the frame window include commands to hide and display toolbars.
The presence or absence of the toolbar is not particularly material to a docu-
ment or its views. Rather, it is a configuration issue with effects global to the
entire application.

7.3.5 Overriding Virtual Document Functions

As you learned earlier in this chapter (when working with OnNewDocument()
and Serialize()), many of the member functions the CDocument class
defines are virtual functions, meaning that you can override them in your own
class declarations. The virtual functions in the CDocument class provide default
processing that is sufficient for most needs. However, you will also find that your
programs must perform specific processing for a certain document that the
default processing does not provide.

For example, the CDocument class and its derivatives will call the
OnNewDocument() member function whenever the program initializes a
new document object (or when the program reuses an existing document
object in an SDIU application). Your applications will typically call the
OnNewDocument() function when handling a File New command. Simi-
larly, your CDocument calls the OnCloseDocument() member function
when the application is about to close a document. You should override this
document within your own document classes if your application must per-
form any clean-up operations before destroying the document object.

Your document classes will call the OnOpenDocument() and OnSave-
Document() functions to read a document from disk or to write a docu-
ment to disk, respectively. You should override these functions only if the

ch07.fm Page 203 Wednesday, November 24, 1999 11:41 AM

204 Chapter 7 Working with Documents and Views

default implementation (which calls the Serialize() member function) is
not sufficient. An excellent example of a situation in which you would over-
ride OnOpenDocument() and OnSaveDocument() is if you are encrypt-
ing data before you write it to the disk and decrypting it when you reload it
from the disk.

The default implementations of both OnOpenDocument() and
OnCloseDocument() call the DeleteContents() member function.
The DeleteContents() member function deletes the document’s con-
tents without actually destroying the document object. Using DeleteCon-
tents() when opening a new document is more efficient (in terms of both
memory usage and application speed) than actually closing and destroying
the original document object and creating a new document object.

The OnFileSendMail() member function sends the document object
as an attachment to a mail message. It first calls OnSaveDocument() to
save a copy of the document to temporary disk file (in the directory set by
your TEMP environment variable). Next, the program code within the
member function attaches the temporary file to a MAPI message. The
member function uses the OnUpdateFileSendMail() member func-
tion to enable the command that you identify with the constant
ID_FILE_SEND_MAIL in the application’s menu or remove it altogether if
MAPI support is not available to the program. Both OnFileSendMail()
and OnUpdateFileSendMail() are overridable functions, which lets
you (relatively easily) implement customized messaging behavior within your
applications.

7.4 Working with Complex
Document Data

Earlier in this chapter you learned how to derive simple document classes
from CDocument , within which you can store the document’s data in a series
of simple member variables. However, creating applications that you will use
in the real world tends to be more demanding. Most applications you will
develop will require significantly more advanced data than what you could
ever possibly represent with a few variables of simple data types.

There are many different approaches that you will use to manage complex
data types within a document object; however, arguably the best approach is
to use a set of classes that you derive from the CObject class. Each derived
class, then, will store the complex data objects. The document, in turn, will

ch07.fm Page 204 Wednesday, November 24, 1999 11:41 AM

7.4 Working with Complex Document Data 205

use a standard or custom-created collection class to embed the objects within
the document class. For example, you might create data definitions similar to
the following for an application:

class CAppObject : public CObject {
 // definitions
}

class CAppSubObject1 : public CObject {
 // definitions
}

class CAppSubObject2 : public Cobject {
 // definitions
}

Then, within the declaration of the document class, you would include a
CObList member. The COblist class supports ordered lists of nonunique
CObject pointers accessible sequentially or by pointer value. COblist lists
behave like double-linked lists. Your document declaration, therefore, would
look similar to the following:

class CSampleDoc : public CDocument {
 // code here
 public
 CObList_m_DataObList;

 // code here
}

In a complex situation such as the one just outlined, it is often not suffi-
cient to simply declare member variables. Your document class is also likely
to require member functions that provide methods to let views and other
objects that must access the document’s data do so. For example, you may not
want to let other classes (such as a view class) directly manipulate the
m_DataObList variable directly. Instead, you should usually provide a
member function that the view class can access to iterate through the
m_DataObList object as it needs to.

Such member functions should also ensure that each time the document’s
data changes, the application properly updates all the document’s views. The
member functions should also call the document’s SetModifed member
function to indicate to the document that an accessing function or class has
changed the document’s data. If your application will support an undo-type
capability, you should also place your application’s buffered undo data into its
correct storage location while inside the member function. To understand

ch07.fm Page 205 Wednesday, November 24, 1999 11:41 AM

206 Chapter 7 Working with Documents and Views

this better, consider the following member function, AddNewObj() , which
adds a new object to the document’s object list:

BOOL CSampleDoc : AddNewObj(CAppObject *pObject)

{

 try {

 m_DataObList.AddTail((CObject *)pObject);

 SetModifiedFlag(TRUE);

 UpdateAllViews(NULL, UPDATE_OBJECT, pObject;

 return TRUE;

 }

 catch(CMemoryException *e) {

 TRACE("Doc—AddNewObj_memory allocation error.\n");

 e->Delete();

 return FALSE;

 }

}

Understanding the importance of the AddNewObj() member function is
easier when you consider the relationship between the document and its
views and how the program will pass control back and forth between the two.

First, the user will interact with the view, which might result in a new
object being added, an existing object being modified or deleted, or some
other action. For now, presume that the user’s actions result in the need to
add a new object to the document. To add a new object, the view object calls
the AddNewObj() member function. After the member function adds the
new object successfully, the document object will call the UpdateAll-
Views() member function, which, in turn, will call the OnUpdate()
member function of each view that you have previously associated with the
document. The AddNewObj() member function passes a hint to the
UpdateAllViews() member function through the use of the application-
defined UPDATE_OBJECT constant and a pointer to a CObject . The hint
assists all the views in most efficiently updating their component windows by
instructing the views to repaint only those regions of the view directly and
indirectly affected by the addition of the new object. Figure 7-4 shows the
control-passing mechanism that the views and the document will use.

ch07.fm Page 206 Wednesday, November 24, 1999 11:41 AM

7.4 Working with Complex Document Data 207

Figure 7-4 Control passes from the view class to the document class and back.

Another advantage of using MFC collection classes within your application
is that collection classes support serialization. For example, to load and save
your document’s data that is stored in CObject objects and referenced
through a CObList object, all you need to do is to construct the document’s
Serialize() member function as shown here:

void CSampleDoc::Serialize(CArchive &ar)

{

 if (ar.IsStoring()) {

 // serialize any non-collection class data here

 }

 else {

 // serialize any non-collection class data here

 }

 m_DataObList.Serialize(ar);

}

You should be aware, however, that for this technique to work you must
implement the Serialize() member function for all your object classes.
A CObject -derived class will not serialize itself. If you decide to use one of
the general-purpose collection templates, serialization is an issue that you
must pay close attention to. The collection CArray , CList , and CMap rely
on the SerializeElements() member function to serialize the objects
within the collection. MFC declares this function as shown here:

ch07.fm Page 207 Wednesday, November 24, 1999 11:41 AM

208 Chapter 7 Working with Documents and Views

template <class TYPE> void AFXAPI
 SerializeElements(Carchive &ar,
 TYPE *pElements, int_nCount);

Because the collection class templates do not require that you derive TYPE
from CObject , they do not call the Serialize() member function for each
element (because the Serialize() member function is not guaranteed to
exist). Instead, the default implementation of SerializeElements() per-
forms a bitwise read or write action. However, as you can imagine, in most cases,
a bitwise read or write is not what you will want to perform. Rather, you should
implement your own SerializeElements() function for your objects. You
might implement such a function as shown here:

void SerializeElements(CArchive &ar,
 CAppObject **pObs, int_nCoutn);
{
 for (int i = 0; i< nCount; i++; pObjs++)
 (*pObs->Serialize(ar);
}

7.4.1 Understanding the Benefits of
CCmdTarget and CDocItem

As you learned in the previous section of this chapter, you can use objects
that you derive from the CObject class to store data within your documents.
Unfortunately, if you wish your documents and applications to support OLE
automation, the CObject class is insufficient. Instead, you must declare
your objects as command targets. If you wish to support OLE automation,
you may prefer to derive your data from the MFC CCmdTarget base class.

Alternately, and usually better, you may want to derive your data objects
from the MFC CDocItem class. You can either create a collection of CDoc-
Item objects yourself or rely on MFC’s COleDocument class to create the
collection. In other words, rather than deriving your document class from
CDocument , derive it from COleDocument . You can use COleDocument
in OLE applications where either the COleDocument class or a class previ-
ously derived from COleDocument is the base class for the OLE applica-
tion’s document class. Like CDocument , COleDocument is a collection
class. COleDocument supports a collection of CDocItem objects, which
are in turn either COleServerItem - or COleClientItem -derived.
However, COleDocument supports CDocItem generically (that is, it
doesn’t care whether the item is a server or client item). COleDocument ’s
generic implementation means that you can add your own CDocItem -

ch07.fm Page 208 Wednesday, November 24, 1999 11:41 AM

7.4 Working with Complex Document Data 209

derived objects to the collection without fear that doing so will interfere with
normal OLE operations and behavior.

One nice thing about working with COleDocument is that it adds addi-
tional CDOcItem members for you automatically. If you use AddItem() ,
RemoveItem() , GetStartPosition() , and GetNextItem() , you
can add, remove, and retrieve document items without further processing.
The underlying MFC coding handles your other needs (such as serialization)
without further programming on your part.

However, working with COleDocument is not without its pitfalls.
Because of how you derive your document items and the OLE COleCli-
entItem and COleServerItem objects, you may need to perform certain
special programming actions to add certain functions to a given object. For
example, suppose that you declare your object items as shown here:

class CSampleDocItem : public CdocItem {
 // more code here
 CRect m_Rect;
}

In addition, suppose that you also support the m_Rect member variable
within your OLE client items, as shown here:

class CSampleClientItem : public ColeClientItem {
 // more code here
 CRect m_Rect;
};

Given these two declarations, you might suppose that you can create a
function that takes an item from your document and manipulates its m_Rect
member as shown here:

void sampFunc(CDocItem *pItem) {
 samp2Func(pItem->m_Rect); //Error!
}

Because the CDocItem class by itself does not contain an m_Rect
member variable, the compiler will halt the program’s compilation with an
error at the function declaration. Unfortunately, using a pointer to your own
CDocItem -derived class doesn’t really solve the problem either:

void sampFunc(CSampleDocItem *pItem) {
 samp2Func(pItem->m_Rect);
}

While declaring the function in this manner will support your derived
class, it won’t support OLE client items of type CDocItem — a significant
issue. An obvious solution is to simply create two overridden versions of

ch07.fm Page 209 Wednesday, November 24, 1999 11:41 AM

210 Chapter 7 Working with Documents and Views

sampFunc , but maintaining two separate, identical versions of the same
function is not only inelegant, it makes maintenance all that much more diffi-
cult. The best solution is to instead create a wrapper function that takes a
pointer to a CDocItem object and uses MFC runtime type information to
obtain the member variable, as shown here:

CRect_GetRect(CDocItem *pDocItem)
{
 if (pDocItem->IsKindOf(RUNTIME_CLASS(CSampleDocItem)))
 return_((CsampleDocItem *)pDocItem)->m_Rect;
 else if (pDocItem->
 IsKindOf(RUNTIME_CLASS(CSampleClientItem)))
 ASSERT(FALSE);
 return CRect(0, 0, 0, 0);
}

sampFunc(CDocItem *pItem)
{
 samp2Func(GetRect(pItem));
}

This solution, however, does require that you declare and implement
both the CSampleDocItem and the CSampleClientItem classes with
the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros. In general,
however, that should not be an issue, because your document objects will
typically support serialization. When you declare and implement a class
with the DECLARE_SERIAL and IMPLEMENT_SERIAL macros, the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros are implied.

7.5 Understanding How Your
Applications Manage
Documents and Views

Now that you have learned about documents, and been introduced briefly to
document templates, it is important to understand how MFC keeps track of
the documents and views that comprise the application, and which docu-
ments and views are related to one another.

As the document/view architecture is the cornerstone of any document-
based application (as you learned earlier, dialog-based applications perform
differently than document/view applications), MFC must be able to create

ch07.fm Page 210 Wednesday, November 24, 1999 11:41 AM

7.5 Understanding How Your Applications Manage Documents and Views 211

and destroy objects from the document/view implementation classes. As your
application may handle more than one type of document/view relationship,
MFC must have some way of knowing which document, view, and display
classes you implement, what the relationships are between the classes, and
how to create the implementations of the classes at runtime. After all, while
one document might support many different types of views, associating other
views with that same document might be nonsensical.

7.5.1 Working with the
CSingleDocTemplate Class

To learn how MFC describes and maintains these associations, use the App-
Wizard to create a simple single-document application. When you do, you
will find source code that looks like the following:

CSingleDocTemplate* pdocTemplate;
pDocTemplate = new_CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CSIMPLEDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CSIMPLEView));
AddDocTemplate(pDocTemplate);

The code dynamically allocates a new CSingleDocTemplate object.
The constructor for CSingleDocTemplate takes four parameters. The
first parameter is a resource ID. You will learn the significance of the
resource ID later in this chapter. The second, third, and fourth parameters
associated with the CSingleDocTemplate() constructor are pointers to
runtime class information. The RUNTIME_CLASS() macro generates a
pointer to the runtime class information for the application’s document, main
frame, and view classes. These pointers are all passed to the CSingle-
DocTemplate constructor, which keeps the pointers so that it can create
instances of the objects as needed to put together a complete document/view
team.

The CSingleDocTemplate object lives as long as the application con-
tinues to execute. MFC uses the object internally and destroys any added
document templates as the application’s CWinApp object is destroyed. You
can find the code that allocates CSingleDocTemplates to your applica-
tion in its CWinApp::InitInstance() function, but you will never write
code that deletes the document template objects if you use AddDocTem-
plate() to add the template, because the CWinApp destructor function
will clean up that document template allocation for you automatically.

ch07.fm Page 211 Wednesday, November 24, 1999 11:41 AM

212 Chapter 7 Working with Documents and Views

7.6 Understanding the
CMultiDocTemplate Class

Much as the CSingleDocTemplate class defines a document template
that implements the single-document interface, the CMultiDocTemplate
class defines a document template that implements the multiple-document
interface (MDI). An MDI application uses the main frame window as a work-
space in which the user can open zero or more document frame windows,
each of which displays a document.

An MDI application can support more than one type of document, and
documents of different types can be open at the same time. Your application
has one document template for each document type that it supports. For
example, if your MDI application supports both spreadsheets and text docu-
ments, the application will have two CMultiDocTemplate objects.

The application uses the document templates when the user creates a new
document. If the application supports more than one type of document, then
the framework gets the names of the supported document types from the
document templates and displays them in a list in the File New dialog box.
Once the user has selected a document type, the application creates a docu-
ment class object, a frame window object, and a view object and attaches
them to each other.

Core Note

You do not need to call any member functions of CMultiDocTemplate
except the constructor. The MFC framework handles CMultiDocTemplate
objects internally.

7.7 Working with Frame Windows

Throughout this chapter you have learned about documents and frames.
However, as you have probably gathered already, understanding the impor-
tance of frames in a document/view application is also important, even
though you will not work with the frame class(es) anywhere near as fre-
quently as you will work with the document and view classes.

In fact, the view your application implements is a window, but not a pop-
up or frame window. Instead, it is a borderless child window that doesn’t have

ch07.fm Page 212 Wednesday, November 24, 1999 11:41 AM

7.7 Working with Frame Windows 213

a menu of its own, so it must be contained by some sort of frame window.
MFC places the view window you create into the client area of the frame
window identified in the document template constructor. In an SDI applica-
tion, the frame window is always the main window for the application. Simi-
larly, the frame window for views within a multiple-document interface
application is an MDI child window.

When developing a Windows application, most programmers will not take
the extra step of separating the client area of their application from the frame
window. Instead, you would typically create a WS_OVERLAPPED-style win-
dow and paint right in its client area. To make MFC a little more modular,
Microsoft implemented it so that it makes a distinction between the two
types of frame windows that you might use. That is, MFC makes both an
internal and an external distinction between a single-document interface
frame window and a multiple-document interface frame window. You will
learn more about frame windows later, but for now, it’s enough to understand
that the frame window is the one that receives all of the menu and window
frame messages.

7.7.1 Understanding the CMDIFrameWnd and
CMDIChildWnd Classes

The CMDIFrameWnd class provides the functionality of a Windows multiple-
document interface (MDI) frame window, along with member functions that
you will use within your applications to manage the window. To create a use-
ful MDI frame window for your multiple-document interface application,
you must derive a class for the main frame window from CMDIFrameWnd.
After you derive the class, you will add member variables to the derived class
to store data specific to your application (but not data specific to an individual
document). In addition, you must implement message-handler member
functions and a message map in the derived class to specify what happens
when messages are directed to the windows, either by the operating system
or by the document template.

You can construct an MDI frame window in two ways: by calling either the
Create() member function or the LoadFrame() member function of
CFrameWnd() . However, before you call Create() or LoadFrame() ,
you must use the C++ new operator to construct the frame window object on
the heap. Before calling the Create() member function, you can also use
the AfxRegisterWndClass() global function to register the window
class and set the icon and class styles for the frame. You should use the

ch07.fm Page 213 Wednesday, November 24, 1999 11:41 AM

214 Chapter 7 Working with Documents and Views

Create() member function to pass the frame’s creation parameters as
immediate arguments.

On the other hand, the LoadFrame() member function requires fewer
arguments than the Create() member function, and instead retrieves most
of its default values from resources that you create within the project, includ-
ing the frame’s caption, icon, accelerator table, and menu. To be accessed by
LoadFrame() (and loaded into the definition for the new window), all
these resources must have the same resource ID (for example, the MFC
default resource ID IDR_MAINFRAME or any other resource ID such as
IDR_PARANTFRAME).

Core Note

Although MFC derives the CMDIFrameWnd class from the CFrameWnd
class, you do not need to use the DECLARE_DYNCREATE macro when
you declare a frame window class that you derive from CMDIFrameWnd.

Similarly, the CMDIChildWnd class provides the functionality of a Win-
dows multiple-document interface (MDI) child window, along with members
for managing the window. An MDI child window looks much like a typical
frame window, except that the MDI child window appears inside an MDI
frame window rather than on the desktop. An MDI child window does not
have a menu bar of its own, but instead shares the menu of the MDI frame
window. The framework automatically changes the MDI frame window’s
menu bar to represent the currently active MDI child window’s menu bar.

To create a useful MDI child window for your application, you must derive
a class from CMDIChildWnd (or, if you do not intend to customize the win-
dow’s actions, you can simply use the default CMDIChildWnd class). You
will then add member variables to the derived class to store data specific to
the document that the child window will be associated with within the appli-
cation. Furthermore, you must implement message-handler member func-
tions and a message map in the derived class to specify what happens when
messages are directed to the window (otherwise, MFC will use the CMDI-
ChildWnd class’ default handlers to respond to messages the window
receives). There are three ways to construct an MDI child window:

• Directly construct it using the Create() member function.
• Directly construct it using the LoadFrame() member

function.
• Indirectly construct it through a document template.

ch07.fm Page 214 Wednesday, November 24, 1999 11:41 AM

7.7 Working with Frame Windows 215

Core Note

Unlike a frame window class that you derive from the CMDIFrameWnd
class, a frame window class that you derive from CMDIChildWnd must
be declared with the DECLARE_DYNCREATE macro for the
RUNTIME_CLASS creation mechanism to work correctly.

The only time your applications will not create a view within a real frame
window is when the view is active as an embedded OLE object. The view will
still have a frame in such situations, but the frame will be very different from
the standard frame windows you have learned about.

As you have learned, an SDI application usually creates a CFrameWnd
instance, while an MDI application typically creates a CMDIFrameWnd
instance as well as one or more CMDIChildWnd instances. On the other
hand, if you’ve written a dialog-based application, the dialog is the main win-
dow and your application doesn’t have any frame window.

Due to the way command dispatching works, you will find that the frame
window often acts as a catch-all for choices in your command window. In
other words, any command from a menu that isn’t handled by your view will
be offered to your frame window for it to handle.

You should implement handlers, ready for any frame message, no matter
which view the user is currently working with. If you have menu choices that
should react in different ways for different views, you can implement han-
dlers in both the frame and the view classes. The view handler will be exe-
cuted if the view object is active; otherwise, the frame’s handler will be called.

7.7.2 Understanding the Role of
AfxGetMainWnd()

Frames act as the main window for the thread that controls your process. If
you call AfxGetMainWnd() at any point in your program, you can retrieve
a pointer to the CWnd class that your application uses as its main window. You
will need to cast that pointer to the appropriate type if you need to access any
CFrameWnd or CMDIFrameWnd specific members.

A frame window is responsible for one or two more things than just mak-
ing sure your application has a menu and a sizeable frame. It also serves as an
anchor for your window’s toolbar and status bar. If your application has a sta-
tus bar or a toolbar, you will find code in your main frame window that cre-
ates instances of CStatusBar or CToolBar . As you might guess,
CStatusBar creates a status bar and CToolBar handles a toolbar. In most

ch07.fm Page 215 Wednesday, November 24, 1999 11:41 AM

216 Chapter 7 Working with Documents and Views

applications, the creation of these windows is handled in the OnCreate()
member of the application’s frame window.

Core Warning

Since the C++ objects are members of the frame windows, your application
will create them at the same time that it creates the frame window object.

If you are working with an AppWizard-produced application, the status
bar in your application will be called m_wndStatusBar and your first tool-
bar will be called m_wndToolBar . Note that it is your first toolbar that
receives this name. Your frame is completely capable of handling more than
one toolbar — in fact, MFC will layout as many toolbars as you would like.

By the way, CStatusBar and CToolBar classes are dependent on a
frame window. Using them in other types of windows (such as dialogs) is
beyond the scope of this book. Doing so is not usually something that most
programmers would do because it results in a nonstandard interface. These
two classes are not really dependent on the document/view architecture, but
they do rely on the frame window associated with the document and view
classes. The classes use the frame window to lay themselves out in your appli-
cation’s user interface and they keep the view informed of the area it has
available to draw in.

7.8 Understanding the Document
Template Resources

As you learned previously in Section 7.5.1, the first parameter to the
CSingleDocTemplate constructor is a resource ID. The first parameter
tells the frame that the template will use what kind of resources it must have
available to complete the link. This ID identifies the resources used to supply
the frame with an accelerator table, menu, and icon. The frame window that
your application uses should have the same resources ID for each resource
type it wishes to use.

If you examine HexView.rc , you will find that there’s an accelerator
table, a menu, and an icon, each with the ID of IDR_MAINFRAME that cor-
responds to the ID the application passes to the CSingleDocTemplate
constructor. Having exactly the same frame window resource IDs is far more

ch07.fm Page 216 Wednesday, November 24, 1999 11:41 AM

7.8 Understanding the Document Template Resources 217

convenient than requiring the constructor for CSingleDocTemplate to
take six or seven parameters.

The resource ID is also the ID of an entry in your application’s string table.
The identified string has a very special format: it’s really seven strings in one,
each separated by a newline (\n) character.

7.8.1 Considering the Document Template
Lifecycle

As you might imagine, CSingleDocTemplate is a lightweight class — that
is, it takes very little memory. You shouldn’t worry about keeping document
template classes lying about, even if you have dozens of them.

CSingleDocTemplate and CMultiDocTemplate are used heavily
by the application frameworks. After setting them up and getting them
started, your application will depend on the templates to manage the docu-
ment, view, and frame windows objects — but you will no longer need to
manipulate the templates directly. As you saw earlier in this chapter, your
application should register all of the document templates that it will use dur-
ing its CWinApp::InitInstance() member function. By making them
public members of your application object, you can access them later on
when you need to juggle documents and views.

When you think about and manipulate document templates, probably the
best single perspective for you to maintain is to let MFC do the work. In
other words, you should ask MFC’s code in the document template object to
create the view and document you need, and hook up all of the associations.
In a well-designed application, you should almost never have to directly cre-
ate your own views, documents, and frames. The best applications let the
document template do the work.

7.8.2 Advanced Work with Templates

Now that you understand the basics of templates, it is important to think
about them from the perspective of application design. The way your applica-
tion works really depends on your point of view. If your users have to do a lot
of work to get to a view of the data they are interested in, they’ll quickly get
frustrated. Worse yet, if the views your application offers do not represent
information in the way your users perceive as intuitive, your application will
be seen as awkward, since the users will have to spend too much time think-
ing about how things should work instead of actually getting work done.

ch07.fm Page 217 Wednesday, November 24, 1999 11:41 AM

218 Chapter 7 Working with Documents and Views

Out-of-the-box application frameworks that the AppWizard produces are
too good not to use for most of your applications. Even after some modifica-
tion, MFC will react to your changes in ways that are generally seen by the
user as intuitive and consistent with the interfaces they are used to.

If you register several different document templates, you will get the extra
dialog box to allow the user to choose their document type after selecting the
File menu’s New option. And once you have taken advantage of this simple
opportunity, you will soon find that there are several other instances where
you might want your application to differ slightly from the mainstream.

7.8.3 Working with Multiple Templates

You are always allowed to use more than one template when you are running
an MFC document/view application. In general, your application will create
any necessary templates as it handles CWinApp::InitInstance() . If
your application initially came from the AppWizard, you will find that the
function has been coded to create and register a template for the document/
view pair that your application uses by default.

If you ever need to use documents or views in any other combination, you
should add code to create a template for those particular document/view
pairs. Doing so will make it much easier for you to create instances of the
pairs at the user’s request. The CDocTemplate -derived object you create is
just that — an object — and as such, you will need to maintain a pointer to it
after you use new to create it. In general, you should keep these pointers to
document templates as instance data in your application’s CWinApp-derived
class. If you do, you can reference them at almost any time during the appli-
cation’s execution.

Each template you register with the frameworks using CWinApp::
AddDocTemplate() is kept in a linked list. MFC uses this list to find tem-
plates when the user asks to create a new document or a new view, or per-
forms any operation that requires that the application find an appropriate
document template. For example, if more than one document template exists
when CWinApp::OnFileNew() is called, the framework presents a list
box that lets the user select the template for the type of document they wish
to create.

The list is managed by an internal instance of an MFC collection class
called CDocManager . This class is an undocumented implementation fea-
ture of MFC. Understanding how it works, though, can be quite useful. The
CWinApp-derived object in your application creates an instance of the class.
CWinApp holds a pointer to the CDocManager object. It destroys the

ch07.fm Page 218 Wednesday, November 24, 1999 11:41 AM

7.8 Understanding the Document Template Resources 219

object just before your application exits, in CWinApp’s destructor function.
CWinApp stores this pointer in the m_pDocManager member variable. In
fact, you can use this pointer at any time to gain access to the document man-
ager.

The document manager’s main importance derives from its management
of that linked list of template objects. The document manager stores the list
in the public m_TemplateList member. You can walk the list using code
similar to the following:

void CSampleWinApp::IterateEveryTemplate()
{
 CDocManager* pManager = AfxGetAp()->m_pDocManager;
 if (pManager == NULL)
 return;
 POSITION pos = pManager->GetFirstDocTemplatePosition();
 while (pos != NULL) {
 // get the next template
 CDocTemplate* pTemplate =
 pManager->GetNextDocTemplate(pos);
 // you can now do work with each pointer
 DoSomething(pTemplate);
 }
}

One of the most interesting things you can do with the list of templates
is to drive a list of all active documents. This involves a nested loop, so that
for each template you find, you can loop through the documents that the
template has created. To do this, you might use some code similar to the
following:

void CSampleWinApp::IterateEveryDocument()
{
 CDocManager* pManager = AfxGetApp()->m_pdocManager;
 if (pManager == NULL)
 return;
 POSITION posTemplate =
 pManager->GetFirstDocTemplatePosition();
 while (posTemplate != NULL) {
 // get the next template
 CDocTemplate* pTemplate =
 pManager->GetNextDocTemplate(posTemplate);
 POSITION posDoc = pTemplate->GetFirstDocPosition();
 while (posDoc != NULL) {
 CYourDocument* pThisOne = (CSampleDocument*)
 GetNextDoc(posDoc);

ch07.fm Page 219 Wednesday, November 24, 1999 11:41 AM

220 Chapter 7 Working with Documents and Views

 // do some work with each document
 pThisOne->SomefunctionCall();
 }
 }
}

In both of these code fragments, you will retrieve a pointer to the manager
by first getting a pointer to the application object with a call to
AfxGetApp() . Next, you will examine the m_pDocManager member for
the pointer to the template manager. This is, actually, more than a little dupli-
cative, because the code fragments are member functions in CSampleWi-
nApp, so they’re presumably members of the very object that you are
obtaining with the call to AfxGetApp() . Instead, you could have accessed
the m_pDocManager member directly. However, the inefficiency lets you
see the use of AfxGetApp() to retrieve information about the running
application object. More importantly, however, you have learned how to
implement the code in any function of any object in your application because
the code does not presume that it is running within the CWinApp-derived
object.

The code fragments above make use of the CDocManager member func-
tions GetFirstDocTemplatePosition() and GetNextDocTem-
plate() , which should look familiar to you, as they perform similar
processing to the GetFirstViewPosition() and GetNextView()
member functions of the CDocument class that you learned about earlier in
this chapter. GetNextDocTemplate() is the one that does the real work
— it gets a pointer of type POSITION to the next document. As you can see,
there is also some runtime casting in the code fragments because the second
program fragment must promote the pointers to plain CDocument objects
to pointers to the CSampleDocument class. It would be good programming
to do IsKindOf() tests here, or use MFC’s DYNAMIC_DOWNCAST()
macro to make sure you get what you really wanted, but the code does not do
so for simplicity’s sake.

7.8.4 Destroying Documents Added with the
AddDocTemplate() Member Function

If you use AddDocTemplate() to add your new template to the list that
MFC manages for you, you need not worry about deleting the template
when your application closes. However, in some circumstances, you may
wish to have the template hidden from the user, and it is then that you will
need to make sure your template is deleted. Deleting the template object

ch07.fm Page 220 Wednesday, November 24, 1999 11:41 AM

7.9 Understanding and Using the CView Class 221

during the program’s execution of the destructor function of your applica-
tion’s CWinApp object is too good an opportunity to miss.

When designing your applications, don’t worry about keeping templates
around as long as you need them — as you have learned, templates are very
lightweight. As with any other object, common-sense guidelines apply. A
thousand templates are probably a little much (and a coding nightmare), but
adding 10 or 20 templates to an application should not be overly burden-
some, provided that you need the additional templates.

7.9 Understanding and Using
the CView Class

As you have learned, for every CDocument -derived class that presents a
visual interface to the user, there are one or more CView -derived classes that
provide the interface. The CView -derived class provides the visual presenta-
tion of the document’s data and handles user interaction through the view
window.

The view window, in turn, is a child of a frame window. In an SDI applica-
tion, the view window is a child of the main frame window. In MDI applica-
tions, the view window is a child of the MDI child window. In addition, the
frame window can be the in-place frame window during OLE in-place edit-
ing, if your application supports OLE in-place editing. A frame window, in
turn, may contain several view windows (for example, through the use of
splitter windows).

7.9.1 Declaring a View Class

As earlier sections of this chapter have explained in detail, you should declare
all data that is part of a document as part of the document’s class. With that
overriding precept in mind, however, it is important to recognize that there
will likely be many data elements in your applications that pertain to a spe-
cific view. More importantly, most of those data elements will be nonpersis-
tent, meaning you will not save them as part of the document.

Suppose, for example, that you create an application that is capable of pre-
senting the data within the document at different zoom factors. The zoom
factors will be specific to each individual view, meaning that different views
may use different zoom factors even when the views are presenting informa-
tion from the same document.

ch07.fm Page 221 Wednesday, November 24, 1999 11:41 AM

222 Chapter 7 Working with Documents and Views

Given these considerations, you are probably best served to declare the
zoom factor as a member variable of the view class, rather than as a variable
in the document class, as shown here:

Class CZoomView : public CView {

 protected:

 CZoomView();

 DECLARE_DYNCREATE(CZoomView)

 public:

 CZoomableDoc* GetDocument();

 WORD m_wZoomPercent:

}

However, much more important than any member variables representing
a setting is a member variable that represents the current selection. The cur-
rent selection is the collection of objects within the document that the user
has selected for manipulation. The nature and type of manipulation that the
user might perform is entirely application-dependent, but it may include
such operations as clipboard cutting and copying or OLE drag-and-drop
placement support.

Arguably, the easiest way to implement a current selection is to use a col-
lection class, just as you would in the document class. For example, you might
declare the collection that represents the current selection, as shown here:

class CSelectableView : public CView {

 // more code here

 CList <CDocItem *, CDocItem *> m_SelectList;

 //

}

In addition to modifying the view class declaration, you must write one or
more member functions so that your view class can respond to selection
activities — filling and emptying the list, and so on. However, you must also
always override the OnDraw() member function. The default implementa-
tion of OnDraw() performs no processing — you absolutely have to write
code that will display your document’s data items (even if the view class
doesn’t contain member variables of its own).

For example, if you derive your document class from COleDocument
and use CDocItems to maintain the document’s data, your OnDraw()
member function for your class will probably look similar to the following:

ch07.fm Page 222 Wednesday, November 24, 1999 11:41 AM

7.9 Understanding and Using the CView Class 223

void COleCapView::OnDraw(CDC *pDC)
{
 COLECapDoc *pDoc = GetDocument();
 ASSERT_VALID (pDoc);
 POSITION posDoc = pDoc->GetStartPosition();
 while (posDoc != NULL) {
 CDocItem *pObject = pDoc->GetNextItem(posDoc);
 if (pObject->IsKindOf(RUNTIME_CLASS(CNormDocItem))) {
 ((CNormDocItem *)pObject)->Draw(pDc);
 }
 else if (pObject->
 IsKindOf(RUNTIME_CLASS(COleDocItem))) {
 ((COleDocItem *)pObject)->Draw(pDc);
 }
 else
 ASSERT(FALSE);
 }
}

7.9.2 Analyzing the CView Member Function

Like the CDocument class, the CView class offers a wide variety of member
functions that you can use in their default form and that you can override to
provide specific functionality within your applications.

Among the most commonly used member functions in the CView class is
the GetDocument() member function, which returns a pointer to the doc-
ument object that you have previously associated with the view. Another
commonly used member function is DoPreparePrinting() . The
DoPreparePrinting() function displays the Print dialog and creates a
printer device context based on the user’s selections within the dialog. You
will learn more about the DoPreparePrinting() function in Chapter 8.

GetDocument() and DoPreparePrinting() are the only CView
member functions that are overridable. You can override any of the remain-
ing CView member functions. These member functions supplement the
large number of overridable functions that the CWnd class (which is the base
class for the CView class) provides. In addition, the member functions han-
dle the vast majority of user-interface events. Trying to list all the member
functions here is a futile exercise, for there are far too many of them to make
it worthwhile. However, among the member functions are functions to han-
dle keyboard, mouse, timer, system, and other messages, clipboard and MDI
events, and initialization and termination messages. Your application should

ch07.fm Page 223 Wednesday, November 24, 1999 11:41 AM

224 Chapter 7 Working with Documents and Views

override the view class member functions as needed. For example, if your
application lets the user click and drag the mouse to place an object in a doc-
ument, you should override the CWind::OnLButtonDown member func-
tion to support that functionality. In general, you can use the ClassWizard to
create the override function, and simply add the appropriate code in the sec-
tion the ClassWizard marks as TODO:

BOOL CSampView::IsSelected(const CObjedt* pDocItem) const
{
 return (m_SelectList.Find((CDocItem *)pDocItem) != NULL);
}

Another important member function that most applications will override is
the OnUpdate() member function. During execution, the document class’s
UpdateAllViews() member function calls the OnUpdate() member
function for each view associated with a document each time you invoke it.
The default implementation of OnUpdate() simply invalidates the entire
client area of the view window (which, in turn, results in rewarding the entire
client area). To improve your application’s performance, you may wish to
override OnUpdate() and invalidate only the areas of the view window that
the application must update. For example, you might implement OnUp-
date() as shown here:

void CSampView::OnUpdate(CView *pView,
 LPARAM 1Hint, CObject *pObj)
{
 if (1Hint==UPDATE_OBJECT) // app-defined constant
 InvalidateRect((CAppObject *)pObj)->m_Rect);
 else
 Invalidate();
}

Core Note

Normally, you should not do any drawing in the OnUpdate() member
function. Instead, you should draw in the view’s OnDraw() member
function.

If your application supports nonstandard mapping modes such as zooming
or rotating, the CView class OnPrepareDC() member function acquires
special significance. In this function, you will set the view window’s mapping
mode before the application actually draws anything onto the window. You

ch07.fm Page 224 Wednesday, November 24, 1999 11:41 AM

7.9 Understanding and Using the CView Class 225

should always be sure, in the event that you create a device context for your
view window, that your application calls OnPrepareDC() to ensure that the
application applies the proper settings to the device context.

Similarly, your applications may often need to create a device context for
the sole purpose of retrieving the current mapping of the view window. For
example, you might need to convert the position of a mouse-click from physi-
cal to logical coordinates within the view’s OnLButtonDown() member
function, as shown here:

void CSampView::OnLButtonDown(UITN nFlags, Cpoint point)
{
 CClientDC dc(this);
 OnPrepareDc(&dc);
 dc.DPtoLP(&point);
 // further processing
}

7.9.3 Working with Views and Messages

In addition to those messages for which MFC provides default handlers in
either CView or its parent class, CWnd, a typical view class will process many
other system messages. Other messages typically include command messages
that represent the user’s selection of a menu item, toolbar button, or other
user-interface object.

Whether it is the view or the document (or in some cases, the frame) that
should handle a particular message is a decision left entirely up to you.
Remember, however, that the most important criteria in making the decision
is the scope and the effect of the message or command on the application’s
processing. If the command affects the entire document or the data stored
within it, you should generally handle the command in the document class
(except when the command’s effect is through a specific view, as it might be
in some implementations of a cut or paste command). If the command affects
only a particular view (such as setting a zoom or rotation factor), the view
object affected should handle the command.

7.9.4 MFC-Derived Variants of the CView Class

In addition to the basic CView class, MFC provides several derived classes
that serve specific purposes, and that are intended to simplify handling of
complex tasks. Table 7-1 summarizes the MFC-derived CView classes.

ch07.fm Page 225 Wednesday, November 24, 1999 11:41 AM

226 Chapter 7 Working with Documents and Views

Another rarely overriden variant of the CView class is the CPreviewView
class. The MFC framework uses CPreviewView to provide print preview
support to your applications.

All the CView -derived classes provide member functions that are spe-
cific to the class’ goal. Member functions of view classes that derive from
CCtrlView encapsulate Windows messages specific to the control class
they represent.

CFormView and the classes that MFC derives from it (including
CDataRecordView , COleDBRecordView , and CRecordView) sup-
port Dialog Data Exchange (DDE). You can use all four of these classes in a
fashion similar to how you would use CDialog -derived classes, which you
learned about in Chapter 4.

Table 7-1 MFC-Derived Variations of the CView Class

Class Name Description

CCtrlView Supports views that are directly based on a control (such
as a tree control or edit control).

CDaoRecordView Uses dialog controls to display database records.

CEditView Uses an edit control to provide a multiline text editor.

CFormView Displays dialog box controls. You must base
CFormView objects on dialog templates.

CHtmlView Provides a window in which the user can browse sites on
the World Wide Web, as well as folders in the local file
system and on a network.

CListView Displays a list control.

COleDBRecordView Displays database records using dialog controls.

CRecordView Displays database records using dialog controls.

CRichEditView Displays a rich-text edit control.

CScrollView Enables the use of scrollbars for the user to move
through the logical data in the document.

CTreeView Displays a tree control.

ch07.fm Page 226 Wednesday, November 24, 1999 11:41 AM

7.10 Understanding Splitter Windows 227

7.10 Understanding Splitter Windows

In a splitter window, the window is, or can be, split into two or more scrolla-
ble panes. A splitter control (or split box) in the window frame next to the
scrollbars lets the user adjust the relative sizes of the window panes. Each
pane is a view on the same document. In dynamic splitter windows, the views
are generally of the same class. In static splitter windows, the views are more
often of different classes. You will implement splitter windows of both kinds
with the CSplitterWnd class.

Dynamic splitter windows let the user split a window into multiple panes
at will and then scroll different panes to see different parts of the documents.
The user can also unsplit the window to remove the additional views.

Static splitter windows start with the window split into multiple panes,
each with a different purpose. For example, in the Visual C++ bitmap editor,
the image window shows two panes side-by-side. The left-hand pane displays
an actual-size image of the bitmap. The right-hand pane displays a zoomed or
magnified image of the same bitmap. The panes are separated by a splitter
bar that the user can drag to change the relative sizes of the panes.

Until now, you’ve learned only about applications that present one main
window for their user interface. For some applications, it’s interesting or
valuable to have two related sections of the application’s document visible in
the application. Applications that can potentially render wide ranges of infor-
mation to the user are common candidates for this sort of user interface.
Microsoft Excel, for example, lets you split your view of a spreadsheet and
independently scroll over each pane of the window (or over an entirely differ-
ent portion of the sheet in each window).

Many of the applications that you will design, such as the PaintObj
project just presented, could easily present more information than could pos-
sibly fit on one screen. Even though the application lets the user scroll within
the window, the user might be interested in seeing two sections of the win-
dow simultaneously that are too far apart to ever show in a single window on
a screen. By letting the user split their view of the window, you can pack
more information onto the screen in the same amount of space.

Unfortunately, painting this kind of window without MFC support is tire-
some, to say the least. You have to run the paint code twice, essentially fool-
ing it into believing that the window is smaller than it really is — transposing
the coordinates painted into each half of the split. Thankfully, MFC provides
a simple solution: the CSplitterWnd class. CSplitterWnd is a special
window class provided by MFC to live inside your application’s frame win-

ch07.fm Page 227 Wednesday, November 24, 1999 11:41 AM

228 Chapter 7 Working with Documents and Views

dow. Before you learn how to incorporate a splitter window into the design of
your application, it is valuable to quickly review the different types of splitter
windows that are available.

7.10.1 Differentiating Between
Splitter Windows

First, programmers will generally call the CSplitterWnd class, and the
windows it represents, splitters, so you should be aware of the different
terms. Before you implement the CSplitterWnd class, it is worthwhile to
take some time to think a little about the way a CSplitterWnd is used
within your application, and the semantic rules that must be true for the class
to make any sense and work properly.

When a user splits a window, he or she might decide to add another pane
in the window either horizontally or vertically. In other words, the splitter will
have to request that another view be created to fill the area to the right or
below the divider. A user can also further divide a window, requiring three
new views to be created immediately. This will fill the area to the right,
beneath, and to the bottom right of the existing window, illustrating the quar-
tering effect.

The CSplitterWnd class is capable of doing all of this work, because it
records contextual information about the document template during its own
creation. This lets the splitter know what document and which view class will
be referenced by the new view windows. You can develop code to have the
splitter generate different views for each pane in the window, or, alterna-
tively, you can let it generate a new instance of the same view type used in the
original window. You should first decide how you would like the user to
approach the splitter window in your application. You will have two general
choices for your splitter windows: a dynamic splitter or a static splitter.

7.10.2 Understanding Specifics of the
CSplitterWnd Class

As you have learned, you will use the CSplitterWnd class within your
MFC applications to provide users with the functionality of a splitter window,
which is a window that contains multiple panes. A pane is usually an applica-
tion-specific object that you derive from CView, but it can be any CWnd
object that has the appropriate child window ID.

ch07.fm Page 228 Wednesday, November 24, 1999 11:41 AM

7.10 Understanding Splitter Windows 229

You will usually embed a CSplitterWnd object in a parent CFrameWnd
or CMDIChildWnd object. Create a CSplitterWnd object using the fol-
lowing steps:

1. Embed a CSplitterWnd member variable in the parent frame.
2. Override the parent frame’s CFrameWnd::OnCreateClient()

member function.
3. From within the overridden OnCreateClient() member

function, call the Create() or CreateStatic() member
function of CSplitterWnd (depending on the splitter window
type you intend to create).

Call the Create() member function to create a dynamic splitter window.
A dynamic splitter window typically is used to create and scroll a number of
individual panes, or views, of the same document. The framework automati-
cally creates an initial pane for the splitter; then the framework creates,
resizes, and disposes of additional panes as the user operates the splitter win-
dow’s controls. When you call Create() , you specify a minimum row height
and column width that determine when the panes are too small to be fully
displayed. After you call Create() , you can adjust these minimums by call-
ing the SetColumnInfo() and SetRowInfo() member functions.

Also, you can use the SetColumnInfo() and SetRowInfo() mem-
ber functions to set an “ideal” width for a column and “ideal” height for a row.
When the framework displays a splitter window, it first displays the parent
frame, and then the splitter window. The framework then lays out the panes
in columns and rows according to their ideal dimensions, working from the
upper-left to the lower-right corner of the splitter window’s client area.

To create a static splitter window, use the CreateStatic() member
function. The user can change only the size of the panes in a static splitter
window, not their number or order. You must specifically create all the static
splitter’s panes when you create the static splitter. Make sure you create all
the panes before the parent frame’s OnCreateClient() member function
returns, or the framework will not display the window correctly.

The CreateStatic() member function automatically initializes a static
splitter with a minimum row height and column width of 0. After you call
Create() , adjust these minimums (just as you would with a dynamic split-
ter) by calling the SetColumnInfo() and SetRowInfo() member
functions.

The individual panes of a static splitter often belong to different classes. A
splitter window supports special scrollbars (apart from the scrollbars that

ch07.fm Page 229 Wednesday, November 24, 1999 11:41 AM

230 Chapter 7 Working with Documents and Views

panes may have). These scrollbars are children of the CSplitterWnd
object and are shared between the two panes. You create these special scroll-
bars when you create the splitter window. For example, a CSplitterWnd
that has one row, two columns, and the WS_VSCROLL style will display a ver-
tical scrollbar that is shared by the two panes. When the user moves the
scrollbar, WM_VSCROLL messages are sent to both panes. When the panes
set the scrollbar position, the shared scrollbar is set.

When creating either kind of splitter window, you just specify the maxi-
mum number of rows and columns that the splitter will manage. For a static
splitter, panes must be created to fill all the rows and columns. For a dynamic
splitter, the framework automatically creates the first pane when the applica-
tion creates the CSplitterWnd object.

7.10.3 Creating Dynamic Splitters

As you learned earlier in this chapter, dynamic splitters let the user split the
window at his or her leisure. An application with dynamic splitters has small
boxes: one above the vertical scrollbar and one to the left of the horizontal
scrollbar. These can be dragged to split the window in one direction or the
other. Figure 7-5 shows an application with a dynamic splitter, after the user
has split the display into four window panes.

Figure 7-5 An application with dynamic splitter windows.

ch07.fm Page 230 Wednesday, November 24, 1999 11:41 AM

7.10 Understanding Splitter Windows 231

After dragging the box above the vertical bar down a little, the window
splits and automatically creates another view: To set up this kind of splitter,
you will need to declare an instance of CSplitterWnd in your application’s
frame window. For SDI applications, this would be the CMainFrame class,
while for MDI applications, it would be within the CMDIChildWnd class for
each view that implements dynamic splitter windows.

To initialize a dynamic splitter window, create the splitter window when
the frame wants to create a client area of the frame window. Normally, the
frame window will simply create the view and have it inserted into the client
area of the frame, but you can have the splitter create and insert itself into
the frame. The splitter will initialize a single view to populate itself, and will
create more views when the user splits the window’s content.

To get your frame to create the splitter, install an override of the
OnCreateClient() function. For a dynamic splitter in an SDI applica-
tion, the function just needs code similar to the following:

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT lpcs,
 CCreateContext* pContext)
{
 return m_wndSplitter.Create(this, 2,2,
 CSize(1,1), pContext);
}

The CSplitterWnd::Create() function accepts a few parameters.
The first parameter is a pointer to the parent window of the splitter, which
must be the frame. Your next two parameters are the maximum number of
rows and columns that the splitter will support. You can force it to disallow
horizontal splits by passing 1 for the maximum number of rows, or to avoid
vertical splits by passing 1 for the maximum number of columns. Such a split-
ter window won’t have a split box on the appropriate side of the window.

Core Note

Dynamic splitters in MFC are unable to support more than two rows and
two columns. If you try to pass numbers larger than two to the
Create() function, MFC will ASSERT() your debug build and not
compile the application.

The value of CSize() that you pass to the function will cause the splitter
to enforce lower size limits for the panes it creates. A size of 1 × 1, as the pre-
vious code fragment uses, effectively makes the splitter allow any window
size. If, because of its content, your view has problems painting in terribly

ch07.fm Page 231 Wednesday, November 24, 1999 11:41 AM

232 Chapter 7 Working with Documents and Views

small windows, you may want to enforce a lower limit on your splitter by
passing a larger CSize() to the creation function.

MFC won’t let your user create a pane smaller than your passed CSize()
values. It will snap the pane shut when the user lets go of the mouse while
dragging a new size. Debug builds of MFC will display an appropriate warn-
ing within the debug window, such as the following:

Warning: split too small to create new pane.

Given the way all this works, with the splitter creating all of the views,
there clearly must be a way for the splitter to know what view to create —
and for the splitter to hook the view up to the right document. A pContext
parameter gets passed about, from the OnCreateClient() parameter to
the Create() function in CSplitterWnd . The pContext parameter
points at the contextual information that tells the CSplitterWnd code who
should handle the creation of the new view and its subsequent attachment to
a document.

7.10.4 Using Different Views in Dynamic Panes

The code snippet from CChildFrame::OnCreateClient() shown in
the previous section will result in a splitter that contains two instances of
CView, registered in the document template that created the frame. You can
use a different view in the extra panes of your splitter that lets you convey
information in a different manner — side-by-side with information from the
same document in a different view or even a different document in a differ-
ent view.

When the user creates new panes in a dynamic splitter window, MFC calls
the CreateView() member function of the CSplitterWnd class to per-
form the creation. Normally, CreateView() will simply create the
required view, based on the context information you pass to it through the
pContext parameter. If pContext is NULL, the function will determine
what view is the currently active view and tries to create the same one.

You will need to derive your own class from CSplitterWnd if you want
to have different views in the panes of your application’s dynamic splitter win-
dow. You will have to override the CreateView() function, creating the
view of your choice. Fortunately, the overriding code is simple — all you
must do is pass the call along to CSplitterWnd::CreateView() , nam-
ing the RUNTIME_CLASS of the view class you wish to create for the splitter,
as shown in the following code:

ch07.fm Page 232 Wednesday, November 24, 1999 11:41 AM

7.10 Understanding Splitter Windows 233

BOOL CMySplitterWnd::CreateView(int row, int col,
 CRuntimeClass* pViewClass, SIZE sizeInit,
 CCreateContext* pContext
{
 if (row == 0 && col == 0) {
 return CSplitterWnd::CreateView(row, col,
 pViewClass, sizeInit, pContext);
 }
 else {
 return CSplitterWnd::CreateView(row, col,
 RUNTIME_CLASS(CSecondView), sizeInit, pContext
 }
}

The code first checks to determine if the view is being created at row 0,
column 0 in the splitter. If this is the case, the splitter is just now being initial-
ized and you must create a view object of the class requested. If the code is
indeed creating the first view for the splitter, it will create whatever view type
the splitter originally wanted. But if the view is being created at a position
other than the very first, the code will return the RUNTIME_CLASS() of the
CSecondView class.

7.10.5 Using a CRuntimeClass Object

What the code in the previous section is doing is not necessarily very obvious
because the calls to CreateView() supply a pointer to a CRuntime-
Class object. A CRuntimeClass object describes the runtime type infor-
mation for a class. Given this pointer, the code inside CreateView() can
accomplish the construction of whatever object the runtime type information
describes.

If you set a breakpoint on the CMySplitterWnd::CreateView()
function and check the execution stream of an application that uses the code
in the previous section, you will learn some important facts about the splitter
window class. Most notably, you will find out that the splitter will destroy
views that are no longer visible and recreate them later.

7.10.6 Using Splitters with Views Associated
with More Than One Document

The whole process that the previous section details works fine for situations
in which your new view will reference the same document as the existing
views. However, if you want the second view to open another document, you

ch07.fm Page 233 Wednesday, November 24, 1999 11:41 AM

234 Chapter 7 Working with Documents and Views

have to handle the splitter’s creation a bit differently. You will need to actually
create the splitter and give it a different creation context. You must let it
know that it must instantiate new documents and views, as well as move the
view window to the correct coordinates, so that it fits with the rest of the win-
dow. Believe it or not, this last part is the most difficult portion of the process.

You can avoid doing all of this work by eliminating the call to
CSplitterWnd::CreateView() . Instead, develop your own cre-
ation context to pass along to the CreateView() function, which lets
it know exactly what it needs to do.

The pContext parameter is a pointer to a CCreateContext object.
The CCreateContext object records which frame, object, and document
should be used for the newly created document/view pair. The following code
fragment builds its own CCreateContext object called ctxSample1 .
The object is initialized to have the view, document, and template informa-
tion that the application should create in the new splitter panel:

BOOL CYourSplitterWnd::CreateView(int row, int col,
 CRun_timeClass* pViewClass, SIZE sizeInit,
 CCreateContext* pContext)
{
 CCreateContext ctxSample1;
 //if there is no active view, ASSERT
 CView* pOldView = (CView*)GetActivePane();
 ASSERT(pOldView == NULL);
 // you should test pOldView here and do something
 // reasonable with it. In this fragment, we
 // simply find out where the old view is
 ctxSample1.m_pLastView = pOldView;
 ctxSample1.m_pCurrentDoc = pOldView->GetDocument();
 ctxSample1.m_pNewDocTemplate =
 m_pCurrentDoc->GetDocTemplate()
 // pass call along
 return CSplitterWnd::CreateView(row, col,
 pOldView->GetRun_timeClass(),
 sizeInit, &ctxSample1);
}

7.11 Using Static Splitters

You should use static splitters in applications in which dynamic splitters are
inadequate or inappropriate. Static splitters can be used when your applica-
tion needs to show more than two split rows or two split columns. If you are

ch07.fm Page 234 Wednesday, November 24, 1999 11:41 AM

7.11 Using Static Splitters 235

interested in having your window split (no matter what column or row count),
but refuse to allow the user to select how and where the splits should occur,
you should use a static splitter instead of a dynamic splitter, because it’s easier
to code what you need using splitters than it is to write code to negate the
actions of MFC.

Static splitters still use the CSplitterWnd class, but require a slightly
different creation mechanism. You will still put a CCreateWnd instance in
the CFrameWnd or CMDIChildWnd derivative of your application, but your
override of the OnCreateClient() function will contain quite different
code.

7.11.1 Creating a Static Splitter

To begin with, you should call CSpliterWnd::CreateStatic()
instead of CSplitterWnd::Create() . The CreateStatic() func-
tion still creates and wires up the splitter, but you will need to create the con-
tent for the individual panes yourself. If you do not, MFC will ASSERT the
application and stop its execution immediately. To create the pane, call Cre-
ateView() on the CSplitterWnd object you are using. You will need to
make one CSplitterWnd call for each splitter pane you add. For example,
code to create a static splitter with five rows and three columns, would look
similar to the following:

BOOL CMAinFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 BOOL bRet;
 int nRow;
 int nCol;

 if(!m_wndSplitter.CreateStatic(this, 5,3))
 return FALSE;
 for (nRow = 0; nRow < 5; nRow++)
 for (nCol = 0; nCol < 3; nCol++) {
 bRet = m_wndSplitter.CreateView(nRow, nCol,
 RUN TIME_CLASS(CStaticSplitView),
 CSize(50,30), pContext;
 if (bRet == FALSE)
 return FALSE;
 }
 return_TRUE;
}

ch07.fm Page 235 Wednesday, November 24, 1999 11:41 AM

236 Chapter 7 Working with Documents and Views

If you wanted to have different views in each pane, you would write the
function’s code to pass different RUNTIME_CLASS() information for each
CreateView() call.

This chapter outlines ways to manually add a splitter window to your appli-
cation mainly because a splitter window is most often an afterthought. If you
are starting from scratch, you can check the Use Splitter Window in your
application’s MDI Child Frame or Frame Window page. You can reach this
checkbox by pressing the Advanced... button in step four of the AppWizard
request for information, as shown in Figure 7-6.

Figure 7-6 Creating splitter windows within the AppWizard.

7.11.2 Understanding Shared Scrollbars

The CSplitterWnd class also supports shared scrollbars. These scrollbar
controls are children of the CSplitterWnd and are shared with the differ-
ent panes in the splitter. For example, in a 1 row × 2 column window, you can
specify WS_VSCROLL when creating the CSplitterWnd . A special scroll-
bar control will be created that is shared between the two panes, as shown in
Figure 7-7.

ch07.fm Page 236 Wednesday, November 24, 1999 11:41 AM

7.11 Using Static Splitters 237

Figure 7-7 The splitter windows share a single scrollbar.

When the user moves the scrollbar, the framework will send
WM_VSCROLL messages to both views. When the views set the scrollbar
position, the shared scrollbar will be set.

Core Note

Shared scrollbars are most useful with dynamic or static splits that display
two view objects of the same class within their different panes. If you mix
views of different types in a splitter, then you may have to write special code
to coordinate their scroll positions. Any CView -derived class that uses the
CWnd scrollbar APIs will delegate to the shared scrollbar if it exists. The
CScrollView implementation is one such example of a CView class
that supports shared scrollbars. Non-CView -derived classes, classes that
rely on noncontrol scrollbars, or classes that use standard Windows
implementations (for example, CEditView) will not work with the
shared scrollbar feature of CSplitterWnd .

ch07.fm Page 237 Wednesday, November 24, 1999 11:41 AM

238 Chapter 7 Working with Documents and Views

7.11.3 Determining Actual and Ideal Sizes

The layout of the panes in the splitter window depends on the size of the con-
taining frame window (which in turn resizes the CSplitterWnd).
CSplitterWnd will reposition and resize the panes within the containing
frame so that they fit as ideally as possible.

The row height and column width sizes set by the user, or that the applica-
tion sets through the CSplitterWnd API calls, represent the ideal size.
The actual size can be smaller than that ideal size (if there is not enough
room to make that pane the ideal size) or larger than the ideal size (if that
pane must be made larger to fill the leftover space on the right or bottom of
the splitter window).

7.11.4 Understanding Performance Issues
with Splitters

Splitters make it easy to divide the client area of your frame or MDI children to
make the frame hold more than one view. However, this means that your view’s
painting code will be called many more times than before the split. Your view
window will necessarily be smaller than it was before you adopted a splitter
window, so you need to make sure your view does not do any drawing that is
not absolutely necessary. Specifically, your view should not do any drawing
beyond the bounds of the window. Limiting your drawing in such a manner will
help ensure the greatest possible performance for your application.

Limiting the amount of redrawing that views must do is by far the most
important consideration for applications that paint their views repeatedly in
the different panes of a splitter window.

The likelihood that one view will change when another visible view must
update its content for the same document is also much more likely when you
are working with splitter windows. You should think about the different views
in your application and try to ensure that your UpdateAllViews() or
UpdateView() calls pass enough information to the updating view, thus
ensuring that it can do the smallest amount of repainting required.

7.12 Using MFC to Subclass Windows

As you might expect, MFC provides an easy way for you to subclass any win-
dow that you derive from a CWnd-derived object. Rather than making the call
to SetWindowLong() , you can simply invoke the Subclasswindow()

ch07.fm Page 238 Wednesday, November 24, 1999 11:41 AM

7.12 Using MFC to Subclass Windows 239

member function. Much as you would use SetWindowLong() with an
API-created window, you call the Subclasswindow() member function
to dynamically subclass a window and attach it to the CWnd object calling the
member function. You must pass the window handle (HWND) of the window
to subclass to the SubclassWindow() member function, which, in turn,
will return a BOOL value that represents whether the subclassing was success-
ful. When you dynamically subclass a window, windows messages will route
through the CWnd’s class first. Messages that are passed to the base class will
be passed to the default message handler in the window.

On the side of the window being subclassed, the SubclassWindow()
member function attaches the Windows control or window to a CWnd object
and replaces the subclassed window’s WndProc() and AfxWndProc()
functions. The function stores the old WndProc() function in the location
returned by the GetSuperWndProcAddr() member function. You must
override the GetSuperWndProcAddr() member function for every
unique window class to provide a place to store the old WndProc() func-
tion. You might subclass an existing edit control in a dialog box with a code
similar to that shown in the following listing:

BOOL CSubbedDlg::OnInitDialog()

{

 ...Other initialization stuff

 // grab a pointer to the edit control

 CWnd* pEdit;

 pEdit = GetDlgItem(IDC_SSN);

 ASSERT(pEdit != NULL);

 // make the control use the system fixed-width font

 // because with numbers and dashed, it will look nicer

 HFONT hFont = (HFONT)

 ::GetStockObject(SYSTEM_FIXED_FONT);

 CFONT* pfont =:Cfont::FromHandle(hFont);

 pEdit->SetFont(pFont);

 // subclass the edit control so it is connected to the

 // custom CSubbedEdit class.

 m_Subbed.SubclassWindow(pEdit->m_hWnd);

 return_TRUE; // return TRUE unless you

 // set the focus to a control

}

ch07.fm Page 239 Wednesday, November 24, 1999 11:41 AM

240 Chapter 7 Working with Documents and Views

From the point when this code is executed, the messages sent to the
IDC_SSN control are offered first to the m_Subbed object, an instance of
the CSubbedEdit class. CSubbedEdit is a class that subclasses (in the
C++ way) from the MFC CEdit class. Since, after the SubclassWin-
dow() call, the CSubbedEdit class is now an actual MFC window, it will
start to receive messages via the CCmdTarget instance inside the CEdit
class. You can perform the edits using ClassWizard to create message map
entries for WM_CHAR and WM_KEYUP and to code whatever validation you
need in response to those messages.

You can see that the CSubbedEdit class is a member of the application’s
dialog class. When the dialog initializes, the SubclassWindow() call is
made against the social security number (IDC_SSN) . The program code
never does anything to undo the subclassing because the functionality is dis-
connected when the dialog window is closed.

One additional possibility would be to use a local instance of the
CSubbedEdit class and call SubclassWindow() on that. This usually
isn’t acceptable, since the CSubbedEdit instance has to outlive the con-
trol that it subclasses. Locally declaring a subclassing MFC class to a
function is almost worthless because there are very few functions that
continue to run while messages are being dispatched. The subclassing
code would never be installed while messages were being received.

When you want to return the subclassed window to its original state, you
should call the CWnd::UnsubclassWindow() member function to
unsubclass the window. The UnsubclassWindow() member function
returns a window handle to the newly detached window.

7.13 Alternatives to the
Document/View Architecture

While the document/view model is a good default and useful in many appli-
cations, some applications need to bypass it. The point of the document/view
architecture is to separate data from viewing. In most cases, this simplifies
your application and reduces redundant code. As an example of when this is
not the case, consider porting an application written in C for Windows. If
your original code already mixes data management with data viewing, moving
the code to the document/view model is harder because you must separate
the two. You might prefer to leave the code as it is. There are many

ch07.fm Page 240 Wednesday, November 24, 1999 11:41 AM

7.14 Summary 241

approaches to bypassing the document/view architecture, of which the fol-
lowing are only a few:

• Treat the document as an unused appendage and implement
your data management code in the view class. Overhead for the
document is relatively low, as described below.

• Treat both document and view as unused appendages. Put your
data management and drawing code in the frame window rather
than the view. This is close to the C language programming
model.

• Override the parts of the MFC framework that create the
document and view to eliminate creating them at all. As you
have learned, the document creation process begins with a
call to CWinApp::AddDocTemplate() . Eliminate that
call from your application class’s InitInstance()
member function and, instead, create a frame window in
InitInstance() yourself. Put your data management
code in your frame window class. This is more work and
requires a deeper understanding of the framework, but it
frees you entirely of the document/view overhead.

7.14 Summary

Most MFC applications are based on the document/view model. The docu-
ment, an abstract object, represents the application’s data and typically corre-
sponds to the contents of a file. The view, in turn, provides presentation of
the data and accepts user-interface events. The relationship between docu-
ments and views is one-to-many: a document may (and generally will) sup-
port several associated views, but a view is always associated with exactly one
document.

Your applications will derive their document classes from the MFC-pro-
vided CDocument class. The CDocument class encapsulates much of the
basic functionality of a document object. In the simplest case, applications
need add only member variables that represent application-specific data and
provide overrides for the OnNewDocument() (for initialization) and
Serialize() (for saving and loading data) member functions to obtain a
fully functional document class.

ch07.fm Page 241 Wednesday, November 24, 1999 11:41 AM

242 Chapter 7 Working with Documents and Views

More sophisticated applications will generally rely on collection classes to
implement the set of objects that comprise a document. In particular, appli-
cations can use the COleDocument class and rely on its capability to man-
age a list of CDocItem objects that MFC does not restrict to OLE client and
server objects.

You will derive view classes from the MFC CView base class. View win-
dows that CView objects represent are child windows. In an SDI project, the
parent window is the main frame window; in an MDI project, the parent win-
dow is the controlling MDI child window.

A view object, in addition to containing member variables that represent
view-specific settings (such as zoom and rotation settings), often implements
a current selection. The current selection is the set of document objects that
the user has designated or selected within the current view for further
manipulation. As with documents, most complex applications will use collec-
tion classes to manage the current selection.

While a view class may, and generally will, override many member func-
tions of the CView class from which it derives, every view class must override
the OnDraw() member function. For OLE applications, you must also over-
ride the IsSelected() member function. In addition, you will generally
override OnUpdate() and OnPrepareDC() within your applications.

Beyond CView implementations that you may derive, MFC provides sev-
eral derivatives of the CView class that you may use within your applications
to handle scrolling views, views based on dialogs, controls, and views repre-
senting database records. When you design your application, you should be
sure to select the class most appropriate to your application as the base class
for your view class.

You’ve also learned about splitter windows, a powerful tool for effectively
using the limited “real estate” that users will grant your applications on their
desktop. Effective splitter window use lets you increase and manage not only
how much information you can present to your users within your application,
but how you present the information.

Finally, you learned about subclassing windows, which lets you instruct the
operating system and your application as to what windows should process
messages, and how to respond when the user clicks certain windows. You
learned that subclassing windows, while relatively simple from the Windows
API, is very easy within MFC, and that the CWnd class from which you will
derive most windows includes the SubclassWindow() and Unsub-
classWindow() member functions.

In Chapter 8, you will go one step farther with your documents and views
and learn how to add printing support to your applications, how to manage

ch07.fm Page 242 Wednesday, November 24, 1999 11:41 AM

7.14 Summary 243

the MFC printing process, and how to generate attractive output from within
your applications. In the next chapter, you will work with callback functions
and messages to help you better understand how the operating system com-
municates with your application, independent of how you implement your
application’s interface.

ch07.fm Page 243 Wednesday, November 24, 1999 11:41 AM

